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Abstract. We re-estimate the tensor susceptibility of the QCD vacuum, χ, and to this end, we re-estimate
the tensor coupling constants for the transversely polarized ρ-, ρ′- and b1-mesons. The origin of the sus-
ceptibility is analyzed using (anti-)duality between the ρ- and b1- channels in the 2-point correlator of
the tensor currents. We conclude that the origin of the differences in ρ- and b1-meson masses and tensor
couplings is the (anti-)duality breakdown in QCD due to the 4-quark condensate. We confirm the results of
Govaerts et al. for the 2-point correlator of the tensor currents and disagree with Belyaev and Oganesyan
on both the OPE expansion and the value of the QCD vacuum tensor susceptibility. Using our value for
the latter we determine new estimations of the nucleon tensor charges related to the first moment of the
transverse structure function h1 of a nucleon.

1 Introduction

In this paper, we investigate the low-energy properties of
the lightest transversely polarized mesons with quantum
numbers JPC = 1−−(ρ, ρ′), 1+−(b1) in the framework of
QCD sum rules (SRs) with non-local condensates (NLCs)
as well as with the standard ones. This work was started
in [3], where the “mixed parity” NLC SR for the light-cone
distribution (LCD) amplitudes of both the ρ- and the b1-
meson was constructed. It was concluded that to obtain a
reliable result we should reduce model uncertainties due
to the non-local gluon contribution into the SR for LCD.
Different SRs for each P -parity could be preferable for this
purpose. As a first step, to obtain the twist 2 meson LCD,
we concentrate on the meson static properties using the
“pure parity” NLC SR for each meson separately:
(1) we re-estimate the tensor coupling constants fT

m for
transversely polarized ρ⊥(770) (1−−) and b1⊥(1235)
(1+−)-mesons and estimate a (new) one for ρ′

⊥(1465)-
meson [4];
(2) we correct the previous consideration by Belyaev and
Oganesyan (B&O) [2] and provide a new estimation for
the vacuum tensor susceptibility (VTS) introduced in [5,
6].

The static characteristics, the coupling constants fT
m

and “continuum thresholds” sm (parameters of the phe-
nomenological models for the spectral densities) of the
lightest transversely polarized mesons in the channels with
JPC = 1−− and 1+− are tightly connected with the value
of the VTS. Namely, the difference of the meson proper-
ties in these channels fixes the non-zero value of the VTS:

a e-mail: bakulev@thsun1.jinr.ru
b e-mail: mikhs@thsun1.jinr.ru

in a hypothetical model of Nature, e.g., where the prop-
erties of these mesons are the same, VTS is identically
equal to zero. For the reason that these meson constants
should appear in VTS in the form of a difference, one has
to define them more precisely and in the framework of a
unified approach.

The approach of the NLC SRs was successfully applied
for the determination of meson dynamic characteristics
(LCD amplitudes, form factors; see, e.g., [3,7] and refer-
ences therein). For the readers’ convenience some impor-
tant features of the approach should be recalled. The orig-
inal tool of NLC SR is the non-local objects like M(z2) =
〈q̄(0)E(0, z)q(z)〉1, rather than 〈q̄(0)q(0)〉. The NLC
M(z2) can be expanded over the standard (local) conden-
sates, 〈q̄(0)q(0)〉, 〈q̄(0)∇2q(0)〉, “higher dimensions”. So,
one can come back to the standard SR by truncating this
series. But, in virtue of the truncation, one loses an impor-
tant physical property of the non-perturbative vacuum –
the possibility of vacuum quarks (gluons) flowing through
the vacuum with non-zero momentum kq(g) �= 0. The pa-
rameter 〈k2

q〉 fixing the average virtuality of the vacuum
quarks was estimated from the mixed condensate of di-
mension 5, 〈k2

q〉 = λ2
q ≈ 0.4 − 0.5GeV2 [8] (see Appendix

A, (A.6)). This value is of the order of the hadronic scale,
m2

ρ ≈ 0.6GeV2; therefore it should be taken into account
in QCD SR for light hadrons. Since neither QCD vacuum
theory exists, nor the higher dimension condensates are
estimated, it is clear that merely the models of the NLC
can be suggested. Here we apply the simplest ansatz [7],
which takes into account only the main effect 〈k2

q〉 �= 0 and

1 Here E(0, z) = P exp
(
i
∫ z

0 dtµAa
µ(t)τa

)
is the Schwinger

phase factor required for gauge invariance
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leads to Gaussian decay for the NLC, while the quantity
1/λq reveals itself as the length of the quark–gluon cor-
relation in the QCD vacuum [7]. It is important to note
that the non-local character of the quark condensate has
recently been confirmed in direct lattice calculations [9,
10]. The latter measurement in [10] confirms the validity
of the Gaussian ansatz, as well as the value of the param-
eter λ2

q.
The NLC approach can improve the stability and ac-

curacy of the SRs even for determining the coupling con-
stants where the NLC effect is of the order of the radiative
correction contribution. Note that the effect is not sensi-
tive to the details of the specific NLC ansatz. Therefore,
we revise the values of these static meson characteristics
in pure parity NLC SRs, though different estimations for
these quantities can be found in the literature [11,2,3] ob-
tained in different ways. For comparison, we also calculate
all these quantities in the standard way which corresponds
to processing our NLC SR in the limit λ2

q → 0.
The above-mentioned difference of meson properties

is due to the specific four-quark condensate contribution
to the “theoretical part” of the SRs. This contribution
is invariant under the duality transformation in contrast
to all other condensate contributions which change sign
under the same transformation. This peculiarity of the
four-quark condensate contribution will be considered in
detail.

The plan of presentation is the following: first, we con-
sider the QCD SR approach to investigate the 4-rank ten-
sor 2-point correlator for transversely polarized ρ-, ρ′- and
b1-mesons. Then we define the duality transformation and
draw consequences from it for the constructed SRs. Fi-
nally, we derive a new estimation for the QCD VTS and
nucleon tensor charges and discuss what is wrong in the
consideration of [2].

2 Tensor couplings
for (JP C = 1−−, 1+−)-mesons

We start with the 2-point correlator of tensor currents,
Jµν(x) = ū(x)σµνd(x),

Πµν;αβ(q) = i
∫

d4xeiq·x〈0|T [Jµν+(x)Jαβ(0)]|0〉. (1)

(Note here that due to isospin symmetry this is the same
correlator as was studied in [2].) This correlator can be
decomposed in invariant form factors Π± [1,11],

Πµν;αβ(q) = Π−(q2)Pµν;αβ
1 +Π+(q2)Pµν;αβ

2 , (2)

where the projectors P1,2 are defined by the expressions

Pµν;αβ
1 ≡ 1

2q2

[
gµαqνqβ − gναqµqβ − gµβqνqα

+ gνβqµqα
]
; (3)

Pµν;αβ
2 ≡ 1

2
[
gµαgνβ − gµβgνα

] − Pµν;αβ
1 , (4)

which obey the projector-type relations

(Pi · Pj)
µν;αβ ≡ Pµν;στ

i Pστ ;αβ
j

= δijP
µν;αβ
i (no sum over i),

Pµν;µν
i = 3. (5)

Then for the form factors Π±(q2) it is possible to use
dispersion representations of the form

Π±(q2) =
1
π

∫ ∞

0

ρ±(s)ds
s − q2 + subtractions, (6)

which after the Borel transformation (with Borel param-
eter M2) become

Π±(q2) → BΠ±(M2)=
1

πM2

∫ ∞

0
ρ±(s)e−s/M2

ds. (7)

A phenomenological model for the spectral density
ρphen(s) is usually taken in the form of “lowest resonances
+ continuum”:

ρphen
± (s) = ±2π

∣∣fT
m

∣∣2 s · δ(s − m2
m)

+ρpert
± (s)θ(s − s±), (8)

where fT
m and mm are the constants and masses of the

lowest meson resonances,m = ρ, ρ′, b1, contributing to the
correlator of interest, and the ρpert

± (s) are the correspond-
ing spectral densities of the perturbative contributions to
the correlators Π±(q2). The coupling constants fT

m are de-
fined via the parameterization of the unit helicity (|λ| = 1)
states of the ρ-, ρ′- and b1-mesons

〈0 |ū(x)σµνd(x)| ρ+(p, λ)(ρ′+)〉
= ifT

ρ,ρ′ (εµ(p, λ)pν − εν(p, λ)pµ) ; (9)

〈0 |ū(x)σµνd(x)| b+1 (p, λ)〉 = fT
b1εµναβε

α(p, λ)pβ ; (10)

here εµ(p, λ) is the polarization vector of a meson with
momentum p and helicity λ. To construct the SRs, one
should calculate the OPE of the correlators Π±(M2)

BΠ±(M2) =
1

πM2

∫ ∞

0
ρpert

± (s)e−s/M2
ds+

a±
M2

〈αs

π
G2

〉

+
b±
M4π〈√αsq̄q〉2. (11)

We perform these calculations in the approach of the QCD
SRs with NLCs (see [3]), where the coefficients a±, b±
become functions a±(M2), b±(M2) of the Borel param-
eter M2 which tend to their standard values for large
M2, M2  λ2

q, e.g., b± = lim
(λ2

q/M2)→0
b±(M2). The func-

tions a±(M2), b±(M2) can be considered as accumulating
an infinite subset of the standard condensate

(
λ2

q/M
2
)j-

contributions [7] in OPE. All needed NLC expressions
are given in Appendix A, while the standard coefficients
a±, b±, corresponding to the limit λ2

q/M
2 → 0, are explic-

itly written below. Their values are in full agreement with
the preceding calculations performed in [1,11]
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1
(±2)

ρpert
± (s) = ρpert

0 (s) ≡ s

8π

[
1 +

αs(µ2)
π

×
(
7
9
+

2
3
log

s

µ2

)]
; (12)

1
(±2)

a± =
1
24

; (13)

1
(−2)

b− =
−16 + 80 + 144

81
=

208
81

; (14)

1
(+2)

b+ =
−16 + 80 − 144

81
=

−80
81

. (15)

Here µ is the renormalization scale (µ2 � 1GeV2) and
the coefficients listed in the central parts of the last two
lines correspond to the vector 〈q̄γmq〉, quark–gluon–quark
〈q̄Gµνq〉 and the four-quark 〈q̄qq̄q〉 vacuum condensate
contributions (see details in Appendix A, [7]). We write
down these coefficients explicitly in order to reveal the dis-
crepancy between our results and those obtained by B&O
[2], who found, instead, in the last line

−16 − 48 − 144
81

=
−208
81

,

a result larger than ours by a factor of 2.6. We conclude
that in [2] there is a wrong contribution due to the quark–
gluon–quark vacuum condensate.

Collecting all parts, (7), (8) and (11), together, one
obtains the following SRs:

∣∣fT
ρ

∣∣2 m2
ρe

−m2
ρ/M2

+ (ρ → ρ′) =
1
π

∫ sρ

0
ρpert
0 (s)e−s/M2

ds

−a−
2

〈αs

π
G2

〉
− b−(M2)

2M2 π〈√αsq̄q〉2; (16)

∣∣fT
b1

∣∣2 m2
b1e

−m2
b1

/M2

=
1
π

∫ sb1

0
ρpert
0 (s)e−s/M2

ds

+
a+

2

〈αs

π
G2

〉
+

b+(M2)
2M2 π〈√αsq̄q〉2. (17)

The role of the NLC, concentrated in a±, b±(M2), is im-
portant here, i.e., at M2 = 0.6GeV2 the total conden-
sate contribution in the SR reduces twice in comparison
with the standard (local) one. In accordance with QCD
SR practice, the processing of these NLC SRs are per-
formed within the validity window M2

− ≤ M2 ≤ M2
+

(see details in [12,3]). These windows are determined by
two conditions: the lower bound M2

− by demanding that
the relative value of the 〈GG〉- and 〈q̄q〉-contributions to
the OPE series should not be larger than 30%, the upper
bound M2

+ by requiring that a relative contribution of the
higher states in the phenomenological part of SR should
not be larger than 30%. The processing with the standard
values of the vacuum condensates (see Appendix A) gives
the constants

fT
ρ = 0.157 ± 0.005GeV, fT

ρ′ = 0.140 ± 0.005GeV,

sTρ,ρ′ = 2.8GeV2; (18)

fT
b1 = 0.184 ± 0.005GeV, sTb1 = 2.87GeV2, (19)

Fig. 1. The curves of fT
ρ in M2; the solid line corresponds to

the NLC SR with the ρ′-meson taken into account, the long
arrows show its validity window; the short-dashed line corre-
sponds to the standard SR without ρ′-meson, the small arrows
show the reduced validity window for this case; the dashed line
corresponds to the B&B analyses

which are presented at the normalization point µ2 =
1GeV2. Very stable curves in wide validity windows have
been obtained for all of these quantities.

The processing of the “local” version (at λ2
q → 0) of

the SRs (16)–(17) leads to the values2

fT
ρ = 0.179(0.170) ± 0.007GeV, fT

ρ′ ∼ 0GeV,

sTρ,ρ′ = 2.1GeV2; (20)

fT
b1 = 0.191(0.178) ± 0.009GeV, sTb1 = 3.2GeV2,

(21)

which is an accuracy which looks worse. Really, the curve
corresponding to fT

ρ in M2 is shown in Fig. 1 (solid line)
in comparison with the result of the standard approach
without ρ′-meson (short-dashed line). For the first case,
the validity window expands in the whole region (0.55–
1.20)GeV2 (long arrows) while for the latter case it
shrinks twice to the region denoted in figure by the small
arrows M2

− and M2
+. Note that the standard SR “pushes

out” the ρ′ meson and does not allow one to obtain its
parameters, while the NLC SR is sensitive to this meson
and even allows to determine its mass [3]. We demonstrate
on the same figure the curve for fT

ρ (dashed line), ob-
tained in [11] by Ball and Braun (B&B) in the framework
of the standard approach, the same small arrows denot-
ing its real “working window”. Note here that processing
the B&B SR just in this thin working window results in
a curve very similar in shape to the upper short-dashed
one with the average value fT

ρ (1GeV2) = 0.171GeV. Note

2 To provide a clear comparison with the results of B&O, who
do not take into account ρ′-meson contribution, the conden-
sate non-locality and αs-corrections in the perturbative spec-
tral density, we write down the results of processing our SRs
in the same approximation in parentheses
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Table 1. Estimates for the coupling constants fT(1GeV2) of transversely
polarized ρ(770)-, ρ′(1465)- and b1(1235)-mesons based on processing the
QCD SRs in different approaches

“Pure parity” SR “Mixed parity” SR
based on Π∓ (− for ρ, + for b1) based on (Π− − Π+)/q2

Source Here B&B [11] B&O [2] Herea B&B [11]
fT

ρ [MeV] 157(5) 160(10) − 166(6) 163(5)
fT

ρ′ [MeV] 140(5) − − − −
sρ

[
GeV2] 2.8 1.5 − 1.5 2.1

fT
b1 [MeV] 184(5) 180(10) 178(10) 179(7) 180fixed

sb1

[
GeV2] 2.87 2.7 3.0 2.93 2.1

a The estimates presented in this column have been obtained by processing
the “mixed parity” SR established in [3]. We improve the model for the
phenomenological spectral density using the features of phenomenological
spectral densities of “pure parity” SRs

that recently performed lattice estimates [13]3 give fT
ρ Latt

(4GeV2) = 0.165(11)GeV, which approximately agrees
with both the NLC (18) and the “standard” values of (20).
So we can conclude that our improved SRs (16) and (17)
are really justified and produce reliable and stable results.
All the results obtained by processing “pure parity”, (16)
and (17), and “mixed parity” NLC SR [3] are collected in
Table 1, in comparison with the previous results in [11,2].

It is interesting to note that in spite of the discrep-
ancy in the OPE coefficients, the authors of [2] obtain
for fT

b1
a value of 178 ± 10MeV which is quite close to

the value found by B&B [11]: 180 ± 10MeV. This com-
pensation effect occurs due to the fact that both groups
of authors used different sets of condensate input param-
eters in the SR and this resulted in approximately the
same overall contributions of the quark condensate: B&B
had ((1/2)b+)παs〈q̄q〉2 = −4.2210−4 GeV6; and B&O,
((1/2)b+)παs〈q̄q〉2 = −4.9210−4GeV6, see Appendix B.

3 Duality and its breakdown

Let us consider now an operator D̂ transforming any rank-
4 tensor Tµν;αβ to another rank-4 tensor Tµν;αβ

D =
(D̂T )µν;αβ with

Dµν;αβ
µ′ν′;α′β′ =

−1
4
εµν

µ′ν′ε
αβ

α′β′ and D̂2 = 1. (22)

Our projectors Pµν;αβ
1 and Pµν;αβ

2 under the action of this
operator transform into each other

(
D̂P1

)µν;αβ

= Pµν;αβ
2 ;

(
D̂P2

)µν;αβ

= Pµν;αβ
1 , (23)

3 We are indebted to D. Becirevic, who informed us about
these interesting papers, containing lattice estimates of masses
and coupling constants of mesons

q q
µν αβ

Fig. 2. Diagram with insertion of four-quark condensate

whereas the correlator Πµν;αβ(q) transforms into the cor-
relator of dual tensor currents, Jµν

5 (x) = ū(x)σµνγ5d(x),

(D̂Π)µν;αβ(q) =
∫

d4xeiq·x〈0|T [Jµν+
5 (x)Jαβ

5 (0)]|0〉.
(24)

Now one is faced with a question: How are Πµν;αβ(q) and
(D̂Π)µν;αβ(q) connected?

In perturbative QCD with massless fermions, taking
into account the standard anticommutations, one easily
arrives at

(D̂Π)µν;αβ
pert (q) = −Πµν;αβ

pert (q), (25)

from which it follows that Πµν;αβ
pert (q) is anti-self-dual. The

same (anti-dual) character is inherent in the phenomeno-
logical models, see (8).

The same reasoning is valid almost for all OPE dia-
grams; those with a gluon condensate, with a vector quark
condensate, and with a quark–gluon–quark condensate.
Only the diagram with four-quark scalar condensates is
different (see Fig. 2): in that case there are two γ-matrices
on one line between two external vertices (one from the
fermion propagator and one from the quark–gluon vertex)
because the scalar condensate cancels one γ-matrix. Thus,
we realize that the OPE contribution involves two parts,
one being anti-self-dual (ASD) and the other one self-dual
(SD):

Πµν;αβ
OPE (q) = ASDµν;αβ(q) + SDµν;αβ(q), (26)
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(−D̂ASD)µν;αβ(q) = ASDµν;αβ(q)

≡ Πasd(q2)
(
Pµν;αβ

1 − Pµν;αβ
2

)
, (27)

(D̂SD)µν;αβ(q) = SDµν;αβ(q)

≡ Πsd(q2)
(
Pµν;αβ

1 + Pµν;αβ
2

)
. (28)

The appearance of the SD-diagrams breaks the anti-du-
ality of the two correlators Π and

(
D̂Π

)
.

We can rewrite (26)–(28) to obtain the following rep-
resentation for the OPE-induced part of the correlator:

Πµν;αβ
OPE (q) = Pµν;αβ

1

[
Πsd(q2) +Πasd(q2)

]
+ Pµν;αβ

2

[
Πsd(q2) − Πasd(q2)

]
. (29)

As a simple consequence of this representation and (5) we
have the useful relation

Πµν;µν
OPE (q) = 6Πsd(q2). (30)

Using (27) and (28), one can easily calculate the OPE
coefficients for the different diagrams. For example, let us
consider the 〈q̄Gq〉-condensate and its contribution to the
coefficient b±. Indeed, we know that this contribution is
of the ASD-type, that is

Πµν;αβ
〈q̄Gq〉 = c(q2)

(
Pµν;αβ

1 − Pµν;αβ
2

)
.

Therefore, for a light-like vector z, one has

Π〈q̄Gq〉 = Πµν;αβ
〈q̄Gq〉 gµαzνzβ = c(q2)

2(q · z)2
q2 .

This quantity reduces to the linear combination of 〈q̄Gq〉-
condensate contributions to the correlator for the vector
currents (see [7,3]). In this way, we get the formula

Π〈q̄Gq〉 =
−320(q · z)2

81q6 παs〈q̄q〉2

from which we then obtain the fraction 80/81 appearing
in (14) and (15).

If SDµν;αβ(q) = 0, then we would have the same SRs
for ρ- and b1-mesons. We process this hypothetical SR
within the standard approach without αs-corrections in
the perturbative contribution and obtain the following val-
ues for the low-energy parameters of a hypothetical ρb1-
meson in an anti-dual model of Nature:

mρb1 = (0.865 ± 0.030)GeV;
fρb1 = (0.162 ± 0.005)GeV;

sρb1 = 1.58GeV2. (31)

We see that the mass and the coupling constant of the
ρ-meson are not so much affected by this (anti-)duality
breakdown (10% for the mass). The case of the b1-meson
is quite the opposite. Here the mass falls down to 45% (the
constant to 16%, see (21)). This seems to be quite natural.
In the case of the ρ-meson, the deformation of the SR is

large (the quark condensate contribution is enhanced by
a factor of 3.25), but its functional dependence on the
Borel parameter M2 is almost the same. This is not the
case for the b1-meson. The deformation of the SR due to
the opposite sign of the quark condensate contribution is
essential and this results in such a large effect for the mass
of the b1-meson. Thus, we can conclude that the origin
of the differences in ρ- and b1-meson masses and tensor
couplings is the anti-duality breakdown in QCD due to
the 4-quark condensate.

4 QCD vacuum tensor susceptibility

The QCD vacuum tensor susceptibility χ has been intro-
duced in [5,6] in order to analyze, in the QCD SR ap-
proach, the nucleon tensor charges gu

T and gd
T. It is defined

through the correlator (1) as

χ =
Πχ(0)
6〈q̄q〉 , Πχ(q2) ≡ Πµν;µν(q2). (32)

He and Ji [5] obtained for Πχ(0) the value

1
12

Πχ(0) ≈ 0.002GeV2. (33)

In order to obtain a reliable estimate in our approach we
substitute the decomposition (2) in (32), use the relation
(30) and arrive at the expression

Πχ(q2) = 3
(
Π+(q2) +Π−(q2)

)
= 6Πsd(q2). (34)

This relation clearly demonstrates that Πχ is formed by
the SD part of OPE, i.e., by the four-quark condensate
contribution. Using the dispersion relations (6) we have

1
12

Πχ(0) =
1
4π

∫ ∞

0

ρphen
+ (s) + ρphen

− (s)
s

ds, (35)

and using the phenomenological models for the spectral
densities ρ±(s) in (8), the value of Πχ(0) can be expressed
in terms of the mesonic static characteristics (the analo-
gous formula has been published in [14]):

1
12

Πχ(0) =
(fT

b1
)2 − (fT

ρ )2 − (fT
ρ′)2

2
+

sρ,ρ′ − sb1

16π2

=

{
−0.0055 ± 0.0008GeV2 [NLC]
−0.0053 ± 0.0021GeV2 [Stand.]

, (36)

presented in (18)–(19) for the NLC SR and (20)–(21) for
the standard SR respectively4. Note here that both results
are very close one to another due to strong cancellations in
the difference (36). So, just this combination accumulates
the effect of the four-quark part of the whole condensate
contribution. If we return to the example of an anti-dual
model of Nature (see the end of the previous section, (31))

4 The depicted errors are obtained by a special invented χ2-
criterium and take into account only the SR stability
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where this contribution is absent, we obtain the exact can-
cellation in (36), i.e. Πχ(0) = 0.

B&O in [2] have used the specific representation that
leads to the decomposition

Πχ(q2) = 12Π1(q2) + 6q2Π2(q2), (37)

where Π1(q2) = (1/2)Π+(q2) and q2Π2(q2) = (1/2)(
Π−(q2) − Π+(q2)

)
. Erroneously suggesting that

limq2→0
[
q2Π2(q2)

]
= 0 and using the trick suggested in

[15] based on the dispersion relation5

Πn.p.
χ (0) ≡ 1

12
Πχ(0) =

1
π

∫ ∞

0

ρphen(s) − ρpert(s)
s

ds,

(38)
they concluded that

Πχ(0)n.p. = Πn.p.
1 (0) = (fT

b1)
2 − sb1

8π2 ≈ −0.008GeV2.

(39)
But we see from our analysis that the value of (Π−(q2)−
Π+(q2)) is identically equal to 0 only in an absolutely
self-dual world, which is definitely not realized in QCD:

Π−(0) − Π+(0)
2

=
sρ,ρ′ + sb1

8π2 − (fT
ρ )2 − (fT

ρ′)2 − (fT
b1)

2

= −0.0060 ± 0.0017GeV2 NLC. (40)

This value is comparable with the value of the B&O es-
timate (39) for Πn.p.

1 (0) and should definitely be taken
into account. Comparing the two estimates, our (36) and
B&O (39), one sees a not so large deviation from one an-
other. One should not be surprised because radiative cor-
rections significantly reduce the B&O value to Πn.p.

1 (0) ≈
−0.003GeV2. For this reason the actual magnitude of
our total correction to this estimate is of the order of
100%. When our paper was finished we found the pa-
per of [14], which contains an estimate of the correlator,
(1/12)Πχ(0) = −(0.0083 − 0.0104)GeV2, using the con-
stituent quark model. The authors of this paper have also
determined a rather wide window for VTS by analogy of
(36) using QCD SR results from different sources in the lit-
erature: (1/12)Πχ(0) = −(0.0042 − 0.0104)GeV2. As we
pointed out in the Introduction, since these meson con-
stants appear in VTS in the form of a difference, one has
to define them more precisely and in the framework of a
unified approach. So the large width of this window is not
a surprise for us.

Finally, let us briefly discuss the effect of our estimate
of the VTS on the nucleon tensor charges. Here we follow
the pioneering paper by He and Ji [6] where these charges
were roughly estimated using two types of SRs. Our result
(36) increases the lower (decreases the upper) boundary
for the gu

T (gd
T) charge approximately by a factor of 1.4:

gu
T = 1.47 ± 0.76; (41)

gd
T = 0.025 ± 0.008. (42)

5 Here ρphen(s) and ρpert(s) are the corresponding spectral
densities; the difference of these functions validates the usage
of the unsubtracted dispersion relation

(The results of He and Ji gu
T = 1.33 ± 0.53 and gd

T =
0.04±0.02 have been obtained for, in our opinion, a value
which is too low, being ΛQCD = 100MeV. We, instead,
use the value of ΛQCD = 250MeV.)
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Appendix

A Expressions for non-local contributions
to SR

The form of the contributions of the NLCs to OPE (11)
depends on the model of the NLC. At the same time
the final results of the SR processing demonstrate sta-
bility to the variations of the NLC model provided the
scale of the average vacuum quark virtuality λ2

q is fixed.
Here we use the model (delta-ansatz) suggested in [7] and
used extensively in [3]; this model leads to Gaussian de-
cay for the scalar quark condensate, 〈q̄(0)E(0, z)q(z)〉 ∼
〈q̄q〉 exp (−|z2|λ2

q/8
)
(see the details in [7]), dominated in

b± via b4. Here the factorization hypothesis is applied for
the four-quark condensate, reducing its contribution to
a pair of scalar condensates. In the NLC approach this
may lead to an overestimate of the four-quark condensate
contribution due to evident neglecting of the correlation
between these scalar condensates, see Fig. 2.

In this model we obtain the “coefficients” for OPE in
the SR (16) and (17),

b∓
(
M2

)
∓2

= b2
(
M2) + b3

(
M2) ± b4

(
M2) , (A.1)

where b2 corresponds to the vector (〈q̄γmq〉), b3 to the
quark–gluon–quark (〈q̄Gµνq〉) and b4 to the four-quark
(〈q̄qq̄q〉) vacuum condensate contributions (here ∆ ≡ λ2

q/

(2M2)),

b2
(
M2) = −16; (A.2)

b3
(
M2) =

4
(
60 − 273∆+ 359∆2 − 134∆3

)
3 (1 − ∆)3

; (A.3)

b4
(
M2) = 24 (∆ − 7)

log (1 − ∆)
∆

+ 4
25∆2 − 21∆ − 6

(1 − ∆)2
. (A.4)

The gluonic contribution a± coincides in this model with
the standard expression (13). For quark and gluon con-
densates we use the standard estimates (for “renorm-in-
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variant” quantities in (A.5) we do not refer to any nor-
malization point)〈αs

π
G2

〉
= 1.2 · 10−2 GeV4,

〈√αsq̄q〉2 = 1.83 · 10−4 GeV6, (A.5)

λ2
q

(
µ2 ≈ 1GeV2) ≡ 〈q̄∇2q〉

〈q̄q〉 =
〈q̄ (igσµνG

µν) q〉
2〈q̄q〉

= 0.4 ± 0.1GeV2. (A.6)

B Input parameters
in the B&B and B&O papers

The groups of authors of [11] and of [2] used different
definitions of the initial parameters for processing the SRs.
Namely, B&O used the following set of values (without
any indication on the scale at which renormalization non-
invariant quantities are determined):

αs ≈ 0.1π = 0.314, 4π2〈q̄q〉 = −0.55GeV3,

〈√αsq̄q〉2 ≈ 0.61 · 10−4 GeV6, (B.1)

whereas B&B6 (on the scale µ2 ≈ 1GeV2)

αs = 0.56, 〈q̄q〉 = (−0.250)3 GeV3,

〈√αsq̄q〉2 ≈ 1.37 · 10−4 GeV6. (B.2)

This resulted in approximately the same overall contribu-
tions of the quark condensate in both papers, see the end
of Sect. 2.

6 Let us recall that the standard value is 〈α1/2
s q̄q〉2 ≈ 1.83 ·

10−4 GeV6 [12]
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